Cantorl, chaotic coordinates and temperature
gradients in chaotic magnetic fields

Dr. Stuart Hudson, Princeton Plasma Physics Laboratory
15t International Leiden Symposium on Plasma Physics, Netherlands, 2017

1 Motivation: Error fields, 3D effects, etc. create
“fieldline chaos” in magnetically confined
plasmas, which deterioates confinement.

2 Method: Compare invariant and almost invariant
structures of fieldline flow to isotherms,
where T' satisfies
RIVIT + k1 VAT =0, with k) /1 = 1017,

3 We found:

1) isotherms coincide with cantori;

2) T =T(s) is a surface function
in “chaotic coordinates” based on “ghost surfaces”.

eg. M3D simulation of CDX-U




With Increasing non-axisymmetry,
the flux surfaces become increasingly “broken”

e Invariant flux surfaces are destroyed near “resonances”, ® =N/ m, n, mare integers
construction of action-angle coordinates for perturbed system fails because of “small-denominators”

KAM curve

e Magnetic islands (resonance zones) form

chaotic, “irregular” field lines emerge,
that wander seemingly randomly over a volume

separatrix splitting, unstable manifold, “chaotic tangle”

e Confinement c_ieterlo_ratgs, _ Poincaré Plot ofDiiD ~ Poincaré Plot of Diip
the pressure is flat inside islands and chaos ~ adsymmetric non-axisymmetric
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o The calculation of three-dimensional
partially-chaotic equilibria must

1) Be consistent with theoretical plasma physics
2) Be consistent with experimental results

3) Be consistent with Hamiltonian chaos theory
4) employ numerical methods that accommodate fract
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WHERE TO START? START WITH CHAOS
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he fractal structure of chaos is related to the structure of numbers
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islands & chaos emerge at every rational ~ — about each rational n/ m, introduce excluded region, width r / m*

KAM Theorem — flux surface can survive if [o—n/m|>r/m*, for all n,m

(Kolmogorov, Arnold, Moser) we say that @ is "strongly -irrational” if @ avoids all excluded regions

Greene's residue criterion — the most robust flux surfaces are associated with alternating paths
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THEN, ADD PLASMA PHYSICS

Force balance means the pressure Is a “fractal staircase”
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Vp =j x B, implies that B.Vp=0 I.e. pressure is constant along a field line

Pressure is flat across the rationals (assuming no “pressure” source inside the islands)
— islands and chaos at every rational —— chaotic field lines wander about over a volume

Pressure gradients supported on the “most-irrational” irrationals
— surviving “KAM” flux surfaces confine particles and pressure

Diophantine Pressure Profile is it pathological?

.0, if3d(m,n)st|w-—n/m|< r/m*, where m, n are integer
1, otherwise

LI pressure gradient at Diophantine irrationals

Uflatten pressure at every rational } infinitely discontinuous

Oinfinite fractal structure




Fieldline transport is restricted by irrational field-lines

The irrational KAM surfaces disintegrate into invariant irrational sets = cantori,
which continue to restrict fieldline transport even after the onset of chaos.

' @)mplete barrier|

KAM surfaces stop
radial field-line transport.

Cantori

radial field-line transport

“broken KAM surfaces”
do not stop, but do slow down

(delete middle third)

i — Qartial barrier |

“noble” = | ==

cantori

[S.R. Hudson, Phys. Rev. E 74, 056203 (2006)]
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Cantori are approximated by high-order periodic orbits;

High-order (minimizing) periodic orbits are located using variational methods.

. Magnetic fieldlines are stationary curves, C, of the action, S|C] = / A -dl,
C
where A = V0 — x (1,0, C)VC, and x = 3902 + 3 kiyyn (1) cos(mf — nC).
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. Setting 6.5 = 0 gives 0 = B¢ and ¢ = BC:
Oit1— 0, .
. A piecewise-linear, §(() = 0; + (Oit1 >(C — (;), trial curve
(Git1 — Gi)
allows analytic evaluation of the action integral, S = S(6g, 01,02, ...).
- : 0S

. To find (p, q) periodic curves, use Newton’s method to find 90, — 0,

with constraint (y = (o + 27q and O = 0y + 27p

[ robust = not sensitive to Lyapunov error ]

. Two types of periodic orbit:

0 : stable, action minimax,

X : unstable, action-minimizing, — cantori as p/q — irrational.



Ghost-surfaces constructed via action-gradient flow
between the stable & unstable periodic orbits.

[C. Golé, J. Differ. Equations 97, 140 (1992), R.S. MacKay and M.R. Muldoon, Phys. Lett. A 178, 245 (1993)]
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with negative eigenvalue indicates the direction in which the action mtegral de-
creases.

1. At the minimax (stable) periodic orbit, the eigenvector of the Hessian,

2. Pushing a trial curve from the minimax p/q orbit down the action gradient flow to
the minimizing (unstable) p/q orbit defines “ghost surfaces”.

90, oS <£ problem: action-gradient flow is 1
i . .

— small near integrable limit
[oJe"

Action Gradient Flow:

where « is arbitrary integration parameter (new angle).

3. Ghost surfaces may be thought of as rational coordinate surfaces that pass through
magnetic islands (resonance zones), i.e. “replacement” flux surfaces.

minimax




Ghost-surfaces are identical to guadratic-flux-minimizing
surfaces (if using appropriate angles).

1. Quadratic-flux-minimizing surfaces minimize

_ 1 0S5 ? 1 2 ( Thin solid line = ghost surfaces
= 5/3 (%) dfd¢ = 5/8(\/5]3 'm)" dodg. | Thick dashed line = QFMin surface

2. A constrained variational principle
for rational pseudo-orbits exists:

S[C]—/CA-dly(/HdCa,).

3. Freedom in the choice of angles, \/5(9, (),
exploited so that ghost-surfaces
= quadratic-flux minimizing surfaces.

4. This approach provides
(i) intuitive understanding,

(ii) faster algorithm. @{ Red dots shows Poincaré }
fé.- .

plot of chaotic field
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[R.L Dewar, S.R Hudson & P. Price, Phys. Lett. A 194, 49 (199&5]
[S.R. Hudson & R.L. Dewar, Phys. Lett. A, 373, 4409 (2009)]
[R.L.Dewar, S.R.Hudson & A.M.Gibson, J. Plasma Fusion Res. SERIES 9, 487 (2010)]
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Numerically solving anisotropic heat transport
exploits field-alligned coordinates (a.8.n)

. Heat flux V-q =0, where q =b - VT k| b+ k1 VT, strongly anisotropic.
. Parallel relaxation employs field-alligned coordinates, B = Va x V£,
0°T 0 (BSOoT
so parallel derivative is accurate, VﬁT = 87772 — B¢ 3¢ ( B ac )
0*T  O?T
. P dicular relaxation simply V37T = —— + ——.
erpendicular relaxation simply V9 902 + 95
Sparse linear system solved iteratively on numerical grid, resolution = 22 x 212,
'[ — Poincaré plot Error vs grid resolution 2]

solid lines = isotherms

—-10
10 = 4-th order differencing gives
. 4-th order convergence

={__grey dots = Poincaré _plot ozl A
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Isotherms coincide with cantori and ghost-
surfaces!

Ghost-surface for high-order periodic orbits “fill in the gaps” in the (irrational) cantori.

Ghost-surfaces and isotherms are almost indistinguishable; suggests T=T(s).
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[S.R. Hudson & J. Breslau, Phys. Rev. Lett. 100, 095001 (2008)]



Chaotic-coordinates simplifies temperature profile to a
smoothed fractal (devils) staircase.

Ghost-surfaces can be used as radial coordinate surfaces.

0 0
1. From 0 = %/Vv-qdfu = afavq-nda, assume T = T'(s) to derive T = e

B2
for quadratic-flux 2 = /gSSBg do, and metric G = [ g*°do, g°° = Vs - V.

const.

2. In the “ideal limit”, Kk, — 0, T'(s) — oo on irrational KAM surfaces (where 2 = 0).

3. Non-zero k ensures 7T(s) is smooth; 7T”(s) peaks on minimal € surfaces = noble
cantori. o : : : : . x ;

T

const. _
K}”Q + kG

from numerical | from T’ =

Temperature Profile
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[S.R. Hudson, Phys. Plasmas 16, 010701 (2009)] S




Summary

In chaotic magnetic fields, anisotropic heat transport is
restricted by irrational fieldlines = cantori.

. Ghost surfaces are identical (depending on angle) to
guadratic-flux-minimizing surfaces; a simple numerical
construction is introduced.

Interpolating between rational (p/q) ghost surfaces allows
“chaotic magnetic coordinates”, or “action-angle coordinates
for non-integrable Hamiltonian systems”.

In chaotic coordinates, the temperature profile takes a simple
form.



